CSC2340 Object-Oriented Programming P1
Professor: Zhang

1. A Line is a line defined by the equation ax + by + ¢ = 0 , where a is not equal to zero,
b is not equal to zero, and a, b, and c are all integers. The slope of a Line is defined
to be the double value —a/b . A point (represented by integers x and y) is on a Line if
the equation of the Line is satisfied when those x and y values are substituted into the
equation. That is, a point represented by x and y is on the line if ax + by + ¢ is equal to
0. Examples of two Line equations are shown in the following table.

Equation Slope (a/b) Is point (5, —2) on the line?
br+4y —17=0 —5/4 = —1.25 | Yes, because 5(5) +4(—2) + (—=17) =0
—252 4+ 40y +30 =0 | 25/40 = 0.625 No, because —25(5) + 40(—2) + 300

Assume that the following code segment appears in a main function. The code segment
shows an example of using the Line class to represent the two equations shown in the
table.

Line linel(5, 4, -17);
double slopel = linel.getSlope();
bool onLinel = linel.isOnLine(5, -2);

Line * line2 = new Line(-25, 40, 30);
double slope2 = line2->getSlope();
bool onLine2 = line2->isOnlLine(5, -2);

Line line3(linel);
Line line4(1, 3, 5);
lined4 = linel;

Write the Line class. Your implementation must include a constructor that has three
integer parameters that represent a, b, and c, in that order. You may assume that
the values of the parameters representing a and b are not zero. It must also include a
function getSlope that calculates and returns the slope of the line, and a function isOnLine
that returns true if the point represented by its two parameters (x and y, in that order) is
on the Line and returns false otherwise. Your class must produce the indicated results
when invoked by the code segment given above. You may ignore any issues related to
integer overflow.



2. A grayscale image is represented by a 2-dimensional rectangular array of pixels (picture
elements). A pixel is represented by an integer value that represents a shade of gray. In
this question, pixel values can be in the range from 0 through 255, inclusive. A black
pixel is represented by 0, and a white pixel is represented by 255. The declaration of the
Graylmage class is shown below. You will write two unrelated member functions of the
Graylmage class.

//Global variables
const int BLACK = 0;
const int WHITE = 255;

class GraylImage

{
public:
// Return the total number of white pixels in this image.
// Postcondition: this image has not been changed.
int countWhitePixels(); //To be completed
//Processes this image in row-major order and decreases the value of each
//pixel at position (row, col) by the value of the pixel at position
//(row + 2, col + 2) if it exists. Resulting values that would be less than
//BLACK are replaced by BLACK. Pixels for which there is no pixel at
//position (row + 2, col + 2) are unchanged.
void processImage(); //To be completed
//Return a pointer to a Pixel object at (row, col)
Pixel * getPixel(int row, int col);
int getRows(); // Return the total number of rows of this image
int getCols(); // Return the total number of columns of this image
private:

int rows; // Total number of rows in this image
int cols; // Total number of columns in this image

// The 2-dimensional representation of this image.
// That is a 2D array of pointers to Pixel objects
Pixel *** pixels;

}s

class Pixel

{

public:
//To be completed
//Parameterized constructor

Page 2 of 4



pri

¥
()

(b)

//Necessary getters and setters

vate:

int value; // Pixel value

int row; // Row index of this pixel in an image
int col; // Column index of this pixel in an image

GrayImage * img; //The image to which this pixel belongs

Add a constructor, and necessary getters and setters for the class Pixel that would
be used in the processlmage function in the next question.

Write the function countWhitePixels() that returns the number of pixels in the
image that contain the value WHITE. For example, assume that an image contains
the following pixel values.

255 | 184 | 178 | 84 | 129
84 | 255 | 255 | 130 | &4
78 | 255 | 0 0 78
84 | 130 | 255 | 130 | 84

A call to countWhitePixels function would return 5 because there are 5 entries
(shown in boldface) that have the value WHITE.

Write the function processIlmage that modifies the image by changing the pixel
values of an image according to the following description. The pixels in the image
are processed one at a time in row-major order. Row-major order processes the
first row in the array from left to right and then processes the second row from left
to right, continuing until all rows are processed from left to right. The first index
of a pixel represents the row number, and the second index represents the column
number.

The pixel at position (row, col) is decreased by the value at position (row+2, col+2)
if such a position exists. If the result of the subtraction is less than the value
BLACK, the pixel is assigned the value of BLACK. The values of the pixels for
which there is no pixel at position (row + 2, col 4+ 2) remain unchanged. You may
assume that all the original pixel values in the image are within the range of (0,
255) or (BLACK, WHITE), inclusive.

The following shows the contents of the pixel values before and after a call to
processlmage. The values shown in boldface represent the pixels that could be
modified in a grayscale image with 4 rows and 5 columns.

Before Call to processlmage
221 | 184 | 178 | 84 | 135
84 | 255|255 | 130 | 84
78 | 255 0 0 | 78
84 | 130 | 255 | 130 | &4

After Call to processImage

Page 3 of 4



221 | 184 | 100 | 84 | 135
0 (125|171 | 130 | &4
78 1255 0 0 78
84 | 130 | 255 | 130 | &4

(d) (Extra points) Add a function that returns a histogram of an image for class Gray-
Image. The histogram of an image describes the distribution of pixel values of the
image, normally represented as a bar chart. The horizontal axis is used for pixel
values from 0 to 255. The vertical axis or bar height represents the count of pixels
having the cooresponding pixel value. For example, a pair of coordinates (126, 450)
mean that there are 450 pixels in the image with a pixel value of 126.

// Return a one-dimensional array of integers with the indices representing
// pixel values and its elements representing the counts of cooresponding
// pixel values in this image.

int * GrayImage::getHistogram();

Page 4 of 4



